
Protocol Modelling Semantics for Embedded Systems

Ashley McNeile
Metamaxim Ltd

48 Brunswick Gardens,
London W8 4AN, UK

ashley.mcneile@metamaxim.com

Ella Roubtsova
Open University

Postbus 2960, 6401 DL
Heerlen, the Netherlands
ella.roubtsova@ieee.org

Abstract

The properties of a domain oriented modelling approach
or language are determined by the dominant semantics of
the domain. A significant subclass that needs particular
attention, because of its prevalence, is that of determinis-
tic interactive embedded systems. Embedded systems con-
tain both hardware and software components interacting
with each other and with the users. The components should
be modelled separately, and behaviour should be explicitly
defined in order to ensure correct interaction between the
components.

In this paper we argue that a semantic framework known
as Protocol Modelling provides a good basis for modelling
interactive deterministic embedded systems. Firstly, we ex-
plain how Protocol Modelling represents interaction, and
how it supports Hoare’s CSP composition operator, thus
allowing components of the solution to be modelled sepa-
rately. Secondly, we show how Protocol Modelling can em-
ploy different modelling notations, focusing particularly on
Coloured Petri Nets and State Charts. Finally, we describe
how it guarantees local reasoning about the trace behav-
iour of a composite based on consideration of the compo-
nents. We illustrate these explanations using a simple mo-
bile phone case study.

1 Introduction

Behavioural models use semantic abstractions to rep-
resent intended behaviour of a software system. Behav-
iour, however, is a portfolio concept and we distinguish
many different types of behaviour (deterministic and non-
deterministic, reactive and interactive, statistical, etc.) ap-
propriate to different types of domain and class of system.
Whether a behavioural modelling approach is well suited to
a particular problem depends on whether the underlying se-
mantics of the approach is properly aligned to the domain
and type of system being designed. We focus on a large

class of embedded systems, in which the behaviour is in-
teractive and deterministic, and the system as a whole is
composed from components. In this class of system, which
includes computer peripherals, multi-processor systems-on-
chips (MPSoC) and other embedded systems [10], we need
a modelling approach that is suited to describing interac-
tion and supports the assembly of a complete behavioural
description by composition of parts, corresponding to the
components of the system.

The search for the best way to model interactive be-
haviour is an ongoing endeavour in the modelling com-
munity. Modelling of interactive behaviour in Coloured
Petri Nets has been investigated, for example, in work of
Ph.A.Palanque et. al [11] and Elkoutbi and Keller [8].
Ph.A.Palanque et. al [11] introduces Petri Nets with Ob-
jects (PNO). However, PNO uses conventional Coloured
Petri Nets (CPN) semantics and does not provide a seman-
tic basis for composition. The focus of work of Elkoutbi
and Keller [8] also uses a hierarchical, rather than composi-
tional, structuring of the behavioural model of a system.

In this paper we show that Protocol Modelling seman-
tics [2] supports both the representation of interactive be-
haviour and a compositional modelling approach.

The fundamental abstraction of Protocol Modelling is
a Protocol Machine (PM). A PM is an interactive, event
driven and deterministic machine, and its defining charac-
teristic is its ability to either ignore, accept or refuse any
event that is presented to it. This property enables PMs
to be composed using the CSP (Communicating Sequential
Processes) parallel composition mechanism [4].

There are three properties of PMs that we wish to illus-
trate in this paper:
1. The semantics of a PM is defined independently of the
notation used to describe its behaviour, and this makes it
possible to choose the notation most appropriate to a prob-
lem and to mix different notations on the specification of a
single problem.
2. The result of composing two PMs is another PM,
and the CSP composition mechanism guarantees ”Obser-

Call and
Phone Book
enabled

E

e

Calling1

INT

Initialised

E

Initial

E

1‘e

Initialise

INITIALISE

1‘"initialise"

Off

OFF

Call

CALL

("call",123)

on

ON

FindCall FINDCALL

Phone Book

BOOK

Insert INSERT

Delete

DELETE

Update

UPDATE

End Call Save

ENDCALLINGSAVE

("ecs","mary")

Deleted

RECORD

End
ENDCALLING

Calling2

INT

CALLON

OFF1

OFF2

INITIALISE

FINDCALL

INSERT

DELETE

UPDATE

END CALL SAVE

END1

END2

OFF3

e ne

e

e

e

e

n

e

e

s

s

(s,n)

s

s

(s,m)

(v,m,n)

insert((m,n),l)

(v,m,n)

l

l

(v,m,n)

n

e

(v,m)

insert((m,n),l)

e

e

e

e

(m,n)
update((m,n),l)

l

l

delete((m,n),l)

l

l

[]

n

e

s

find(m,l)

n

e s

s

e

n

Figure 1. A CPN model of a mobile phone that
can save phone numbers

vational Consistency” [5] between the composite PM and
the component machines contributing to the composition.
Observational Consistency enables ”local reasoning”: i.e.,
reasoning about behaviour of the composite based on local
understanding of the behaviour of the contributing compo-
nent machines.
3. Allowing multiple PMs to be composed also allows dif-
ferent levels of abstraction to be used in different PMs used
in a specification. In particular, sets of events or states that
are treated identically at some level of abstraction can be
defined as atomic in a machine that describes that level of
abstraction. This feature extends the composition possibil-
ities to address cases where one machine is composed with
another at several ”join points”, defined either in terms of
events or states.

The remainder of this paper is organized as follows:
- Section 2 presents a model of a mobile phone with a phone
book in CPN [6] using conventional semantics.
- Section 3 discusses the key differences between conven-
tional CPN semantics and the semantics of Protocol Mod-
elling.
- Section 4 describes the key elements of the semantics of
Protocol Modelling.
- Section 5 re-castes the mobile phone example using Pro-
tocol Modelling semantics, using first CPN and then State
Chart notation.
- Section 6 discuses the possibilities of local reasoning and
model evolution supported by the PM approach.
- Section 7 provides a summary of the main points of the
paper.

2 Case Study

We use a simplified case study of a mobile phone with
a phone book that can save names and associated numbers.
In this paper, we present models of the system in three dif-
ferent notations: in this section using Coloured Petri Net
(CPN) notation with conventional semantics; and in the next
section in both Coloured Petri Net and State Chart notation
with Protocol Modelling (PM) semantics.

Figure 1 shows the model of the system in CPN [6, 7]
with conventional semantics. This model represents the mo-
bile phone software as a single net per phone.

The mobile phone model can be initialised (transition
INITIALISE) and switched on (transition ON). Switching
on enables the both the call and phone book functionality
(place Call and Phone Book enabled). The initialisation
means that the token (an empty list) is set into place Phone
Book of color BOOK= list RECORD, where
color RECORD=product NAME*NUMBER;

If the functionality is enabled, a call can be made (transi-
tion CALL) and then ended, either without saving the num-
ber (transition END1), or ended with saving the number in

the phone book (transition END CALL SAVE) as a record
(name, number).

If the user wants to call someone but has forgotten the
number, an attempt can be made to find the name in the
phone book. If the name is found, a call is initiated (transi-
tion FIND CALL). In this case the number is already in the
phone book, so the call is ended without the possibility of a
save (transition END2).

While no call is active, new records (name, number)
can be inserted in the ’phone book’ and existing records
can be updated or deleted (transitions INSERT, UPDATE,
DELETE):
fun insert(z : RECORD, []) = [z] | insert(z : RECORD, h ::
t : BOOK) = if (z = h) then (h :: t) else (h :: insert(z, t));
fun delete(z : RECORD, []) = [] | delete(z : RECORD, h :: t :
BOOK) = if (z = h) then (t) else (h :: delete(z, t));
fun find(m : STRING, []) = 0 | find(m : STRING, (a, b) :: t :
BOOK) = if (m = a) then b else find(m, t);
fun update((y, z) : RECORD, []) = [(y, z)] | update((y, z) :
RECORD, (a, b) :: t : BOOK) = if (y = a) then (y, z) ::
t else ((a, b) :: update((y, z) : RECORD, t : BOOK));

The CPN in Figure 1 contains tokens in places
(Call enabled, 1‘e), (Call,(”call”,123)),
(End Call Save,(”ecs”,”Ann”)).
In this marking transition CALL can fire, then - transition
END CALL SAVE can fire and the record (”Ann”, 123) will
be saved in the phone book.

3 Comparison of Semantics

The central claim of this paper is that the semantics of
Protocol Modelling offers advantages over the conventional
CPN approach illustrated above. In this section we moti-
vate this statement by comparing the semantic basis of two
approaches along a number of dimensions.

3.1 Interactive Behaviour

Conventional CPN semantics does not support interac-
tive behaviour. Key to modelling interaction is the idea that
a system can adopt a number of different states, and that its
ability to handle an input event of given type is state depen-
dent: so that in a given state it can accept inputs of some
types but not inputs of other types, which are disabled or
refused [12]. With conventional CPN semantics, however,
reception of an input is represented by placing a token in
a place on the net, which remains in place until consumed.
There is no concept of disabling a place or refusing a token.

In contrast, the Protocol Modelling (PM) semantics (de-
scribed in the next section) focuses on interactive behav-
iour. The idea that a model has well defined quiescent states
(when it waiting for an interaction with its environment),
and that it can either accept or refuse input events based on
state, is central to the semantic model.

Call
enabled

E

1‘e

Calling1

INT

Initialised

E

Initial

E

Initialise

INITIALISE

Off OFF

Call

CALL

("call",123)

On

ON

End END

Saved

RECORD

Insert

INSERT

Delete

DELETE

Update

UPDATE

Deleted

RECORD

Modify

MODIFY

FindCall

FINDCALL

Calling2

INT

EndCallSave

ENDCALLSAVE

EndCallSave

ENDCALLSAVE

CallMachine.
Calling1

INT

INSERT

INSERT

SavedNumber
Machine.Saved

RECORD

End END

ToSave

RECORD

FindCall

FINDCALL

CallMAchine.
Call enabled

E

CALL

END1

ON

OFF1

OFF2INITIALISE

INSERT DELETE

UPDATE

Modify

FINDCALL

END2
END
SAVE

OFF3

ToInsertENDCALLSAVE

FINDCALL

e

n
n

e

e

e

e

e

e

n

e

e

s

s

(s,n)

s

s

s

(v,m,n)

(m,n)

(v,m,n)
(m,n)

(m,n)

(m,k)

(v,m,n)

(m,n)

(v,m,n)

ee

e
(v,m)

n

n

e

(v,m)

e

s

n

s

("insert",m,n)

n

(v,m)

"end"
(m,n) (m,n)

n

(m,n)

(m,n)

(m,n)(v,m)

e

SAVED NUNBER MACHINE

CALL MACHINE

MODIFY={INSERT, DELETE, UPDATE}

ENDCALLSAVE EXTENSION

Figure 2. A CPN with the PM semantics

3.2 Composition

In conventional CPN semantics there is no notion of par-
allel composition of behaviour. This is (at least partly) a
consequence of the above, as behavioural composition ap-
proaches, such as the parallel composition (P ‖ Q) of
Hoare’s CSP or the concept of a reaction on Milners’ pi-
calculus are predicated on the idea that processes can refuse
events.

In contrast, models with the PM semantics can refuse
events and this allows process algebra style composition, as
described below in Section 4

Calling1END

ENDCALLSAVE

CALL

Calling2
END

FINDCALL

Call enabled

ON
Initialised

OFF

INITIALISE

MODIFY
Call Machine

EndCallSave extension

Retrieve the number being called from the Calling Machine
Create an END event and send it to the model
Create an INSERT event using:

- the name from the ENDCALLSAVE event, and
- the number retrieved above

and send to the model.

Saved Number Machine

DELETE

UPDATE

INSERT
DeletedSaved

FINDCALL

Local Storage:
Name
Phone Number

Local Storage:
Phone Identifier
Number Called

MODIFY ={INSERT,
UPDATE, DELETE}

Figure 3. A State chart with PM semantics

3.3 Objects

In conventional CPN semantics there is no notion of ”ob-
jects”: i.e., the idea that different components of the model
have different numbers of instances during the execution.

In contrast, PM semantics is object based, and compo-
nents (machines or composed assemblies of machines) are
modelled separately for each ”object” (= instantiable en-
tity) identified in the domain. In particular, this means
that a ”Saved Number” functionality can be modelled as
a separate component that has an instance for each number

saved in the phone book. This means that the textually de-
fined functions for handling inserting, updating and deleting
numbers in the phone book (set out above in Section 2) are
not required.

4 Protocol Modelling

In this section we introduce the concepts of Protocol
Modelling (PM) [2]. The concepts described in this section
are notation independent, and pertain whether the model is
described in CPN or in state chart notation. In the section
after this we will show how the mobile phone case study can
be described as a PM model in both CPN and state charts.

Events. The systems we model using PM are event
driven, where an event (properly an ”event instance”) is
an occurrence or command to the system that (in general)
causes the system to change state. In the case of the mobile
phone, events are such things as: ”Call phone number
123”. Every event is presented to the system as a single
input comprising, in general, a number of data attributes.
Every event is an instance of an event-type, and the type of
an event determines the attribute schema for the event, this
being the set of data attributes that completely define an
instance of the event-type. In a mobile phone, for instance,
the attribute schema for the event-type that initiates a call
on the phone would be:
(EVENT TYPE, PHONE NUMBER), where (EVENT-
TYPE=”CALL”).

This approach to modelling events is identical to that
used in other event based modelling approaches [9, 13].

Protocol Machines. In PM, models are built by compos-
ing protocol machines. A protocol machine (hereafter, just
”machine”) is a conceptual machine that has a defined al-
phabet of event-types that it understands, and the ability to
accept, refuse or ignore any event that is presented to it by
its environment [2]. In PM, these machines are the build-
ing blocks of the behavioural entities. Complete models are
built by composing machines that represent partial descrip-
tions of the whole behaviour being modelled.

A Protocol Machine behaves as follows:
- When presented with an event that is not represented in
its alphabet, the Protocol Machines ignores it, which means
the machine does not recognize the event.
- When presented with an event that is represented in its al-
phabet, it will either accept it or refuse it.
- Acceptance or refusal of an event by the machine is de-
termined by rules that the machine applies both before and
after the event.

Note that ”refusal” of an event means that the machine
recognizes the event from its alphabet but is unable to han-
dle the event in its current state, and this normally means
that some kind of error message is generated back to the en-
vironment. How or where such an error is generated is not
of concern for modelling purposes.

Local Storage. Every machine has a local storage which
it and only it can alter, and only when moving to a new state
in response to an event. A machine can update its own local
storage, and may read (but not update) the local storage of
other, composed, machines.

Determinism. Protocol machines are assumed to be de-
terministic, meaning that:

• A Protocol Machine is never presented with an event
unless and until it is in a quiescent state.

• The new quiescent state that a machine reaches as a
result of being presented with an event is completely
determined by
- the last quiescent value of the storage of the whole
model (i.e., the union of the local storage of all ma-
chines),
- the event-type and attribute values of the event pre-
sented to it.

These mean that whether or not a machine accepts an event
is deterministic, and therefore that that executions of a PM
model are repeatable.

CSP Composition. Machines in PM can be composed,
using the following rules, corresponding to the parallel
composition operator (P ‖ Q) of Hoare’s process algebra,
Communicating Sequential Processes [4]. The alphabet
of the composed Protocol Machine is the union of the
alphabets of the constituent machines; and the local storage
of the composed Protocol Machine is the union of the
local storages of the constituent machines. The rules for
whether the composed machine accepts, refuses or ignores
a presented event are:
- If both constituent machines ignore the event, the com-
posed machine ignores it;
- If either constituent machine refuses the event, the
composed machine refuses it;
- Otherwise the composed machine accepts the event.

Objects. A PM model is object based, so that every ma-
chine instantiated belongs to an object instance, identified
by a unique object identifier (OID). The full description of
the behaviour of an object is the parallel composition of
all the machines that share the object’s OID. Moreover, the

composition of machines is across, as well as within, ob-
jects thus an event that targets more than one object is re-
fused if any targeted object is unable to accept it.

Model Extension. Model extension is a technique when
the handling (determining acceptance and performing up-
dates to local storage) of a new event being introduced into
a model can be defined in terms of a number of events al-
ready in the model. This idea is essentially similar to Liskov
and Wings extension maps [3]. Adding a new event-type
to a model to handled by model extension requires the ad-
dition of an extension process to the model that intercepts
every instance of the new event-type and generates one or
more events of existing event-types. Together, the generated
events implement the effect of the new event.

An extension process is not, itself, a protocol machine
and its behaviour is defined differently:
- It is used for every instance of its input event-type;
- It generates events and passes them to the model one at
a time, waiting for the model to reach quiescence between
each;
- It has read-only access to the attributes of the input
event, and to the stable states that the model reaches after
receiving each generated event.

An event handled by an extension process is accepted
by the model iff all the events generated by the extension
process for the event are individually accepted.

5 Rendering the Mobile Phone as a PM
model

In this section, we show how the Mobile Phone case
study can be rendered as a PM model. To emphasize that
PM models can be described in different notations, we
describe:
- a rendering in CPN, and
- a rendering in state chart notation.

In both renderings, the Mobile Phone model is described
using two protocol machines: the Call Machine (which is
instantiated once) and the Saved Number Machine (which
is instantiated once per number saved in the phone book of
the phone). In particular, this allows the event protocol of an
individual number (INSERT, then UPDATE any number of
times, then DELETE) to be explicit in the model, as shown
in the bottom panels of Figure 2 (for CPN rendering) and
Figure 3 (for state chart rendering).

Also, in both renderings, the ENDCALLSAVE event
(which both ends a call and saves the number used for the
call in the phone book) is handled by extension, by gener-
ating an END event to end the call and an INSERT event to
put the number into the phone book.

5.1 CPN PM Rendering

Figure 2 shows the Mobile Phone in CPN PM form. Here
the machines are shown in CPN notation, but the notation
here has PM semantics which map onto the PM concepts
in the previous section 4. In the following paragraphs we
propose how such a mapping can be achieved.

Events and Alphabet. A protocol machine rendered in
CPN has a distinguished subset of places called interface
places that receive events from the environment. These
places have no input arcs. The color (terminology of CPN)
of an interface place corresponds to the event-type of input
events that may be placed there. For example, places On,
Off, Insert, Delete, FindCall in Figure 2 are the interface
places. color INSERT =

product EV ENTTY PE ∗NAME ∗ PHONENUMBER,

where the EVENTTYPE is ”insert”,
the NAME is of type STRING and
the PHONENUMBER is of type INT;
An Event instance is visualized by a token of an event type.

The alphabet of a machine is its set of interface places.
The alphabet of the Call Machine is:
ACallMachine = { INITIALISE, ON, OFF, CALL, FINDCALL,
END, ENDCALLSAVE, INSERT, DELETE, UPDATE } Note that
the events of types INSERT, UPDATE, DELETE are treated
identically by the Call Machine and so are represented in
this machine by the common alias MODIFY. In this way, the
difference between these events has been abstracted away in
the context of this machine.
The alphabet of the Saved Number Machine is:
ASavedNumberMachine =

{ FINDCALL, INSERT, UPDATE, DELETE }

Behaviour. A machine rendered in CPN is quiescent
when no transition is enabled. An event in the alphabet of
the machine placed on an interface place is accepted by the
machine iff placing the token causes a transition to become
enabled. Otherwise, the event is refused and the event (to-
ken) disappears from the interface place. Notice that this
differs significantly from traditional CPN semantics accord-
ing to which tokens that do not enable any transition are
preserved until they can enable a transition. For example, if
the model in Figure 2 is in the local state
{(Call Machine.Call enabled, 1‘e)}
then in response to event (”Insert”,”Ann”, 123) the local
storage can be changed to
{(Call Machine.Call enabled, 1‘e) ;
(Save Number Machine.Saved, (”Ann”, 123))}.

However, the event ”Initialise” would be refused be-
cause the system is in the state Call enabled and no tran-
sitions are enabled by this event.

Determinism. The CPN with PM semantics are deter-
ministic. Recall that the behaviour of a conventional CPN
is a non-deterministic. In this sense, PM semantics is more
restrictive than conventional CPN semantics. Requiring de-
terminism is the price we pay for being able to argue about
behaviour based on analysis of traces, as described below in
Section 6.

In order to ensure determinism of behaviour, a CPN
with PM semantics should be designed so that, when in a
given quiescent state (with no transitions enabled), place-
ment of an event into an interface place can enable at most
one transition. If placement of an event were to enable
more than one transition, the behaviour would become non-
determined because it would depend upon which is chosen
to fire. One way of doing this (and the approach adopted
here) is to ensure that there is only one interface place for
each event type, and that a token placed on one of these can
enable only one transition.

Local Storage. The local storage of a CPN with the PM
semantics is the current marking of the CPN (excluding
markings of the interface places). The local storage of the
model in Figure 2 is
{(Call Machine.Call enabled, 1‘e)},
where 1‘e presents an empty token with no attributes [14].

Extension Extension processes can be rendered as a CPN
notation, but with conventional CPN semantics (as exten-
sion processes are not protocol machines). The extension
process for ENDCALLSAVE is shown in the middle of Fig-
ure 2. In this process, access to the local state Call Ma-
chine.Calling1 is used to guarantee the quiescence of the
Call machine prior to generation of the END event; and sim-
ilarly access to the local state Call Machine.Call enabled
is used to guarantee the quiescence of the Call machine at
prior to generation of the INSERT event. In addition, access
to the local state Call Machine.Calling1 is used to generate
the attribute NUMBER of the event INSERT.

5.2 State Chart PM Rendering

Events and Alphabet. In the State Chart rendering an
event of type X is represented by a label X on an arc. The
alphabet of a machine is the set of such labels. For instance,
in Figure 3 the alphabet of the Call Machine is the set INI-
TIALISE, ON, OFF, CALL, FINDCALL, END, ENDCALLSAVE,
MODIFY.As with the CPN version, events of types INSERT,
UPDATE, DELETE are treated identically by the Call Ma-
chine and so are represented in this machine by the common
alias MODIFY.

Behaviour In State Charts a transition is represented by
an arc with a label showing the event-type that triggers the

transition. If, when an event in the alphabet of the machine
is presented, the current local state of the machine has an
output arc labelled with the type of the presented event then
this event is accepted and the machine transitions to the new
local state to which the arc is directed. If the current local
state of the machine has no output arc that the event can fire,
then the event is refused.

Determinism. In order to ensure determinism of behav-
iour, a machine should be designed so that there is at most
one transition that can fire for a given current state and
event-type.

Local Storage. The local storage is represented as a list
of attributes, as shown in the upper and lower panels of Fig-
ure 3. For example, the local storage of the Call machine is
{Phone Identifier; Number Called}.

Extension. Extension processes are represented as
pseudocode, as shown for the ENDCALLSAVE event in
the central panel of Figure 3.

6 Reasoning about Behaviour and Model
Evolution

In this section we discuss the formal relationship be-
tween a protocol machine that is created by composition
and the component machines used to create it. In particular,
we show how it is possible to reason about the behaviour of
a composite machine based on the behaviour of its compo-
nents.

Preliminary Definitions. For the purposes of this section,
we define some terms.
1. Two events are equal iff they have the same event-type
and the same values for corresponding attributes.
2. An event sequence is an ordered sequence of events.
3. Two event sequences S1 and S2 are equal if they contain
the same number k of events and the nth event in S1 is equal
to the n-th event in S2 for all 1 ≤ n ≤ k.
4. A protocol machine has a defined initial state for its local
storage, in which all attributes of its local storage take initial
values according to their type.
5. A trace of a machine is an event sequence accepted by
the machine starting from the initial state. A trace can be
finite or infinite.

Trace Dependent and Trace Independent PMs. In or-
der to reason about the traces of machines, it is necessary
to distinguish two types of machine: Trace Independent
and Trace Dependent. A trace independent machine is one
whose protocol behaviour (whether it accepts, refuses or

ignores an event presented to it) is a function of, and only
of, the trace history of the machine, where ”trace history”
is the sequence of events so far accepted by the machine. A
machine that is not trace independent is trace dependent.

In informal terms, a trace independent machine is one
that is able to determine whether to accept or refuse an event
based only on its own local storage. It does not need to ac-
cess (read-only) the local storage of any composed machine.
In the mobile phone case study, both the Call Machine and
the Saved Number Machine are trace independent.

INTERRUPT

INITIALISE ON

Off

OFF

Game Machine

Playing

START

Play
enabled STOP

INTERRUPT

INTERRUPT

Interrupted

RESUME

STOP

Calling1END

ENDCALLSAVE

CALL

Calling2
END

FINDCALL

ON
Initialised

OFF

INITIALISE

MODIFY
Call Machine

Call enabled

PLAYEVENT

PLAYEVENT ={START,
RESUME, STOP}

INTERRUPT = {CALL,
FINDCALL}

MODIFY ={INSERT,
UPDATE, DELETE}

Figure 4. Call Machine and Game Machine

Observational Consistency and Local reasoning. Sup-
pose that PM1 and PM2 are protocol machines and that
PM1 and PM1 ‖ PM2 are both trace independent, then
PM1 ‖ PM2 is Observationally Consistent [5] with PM1.
This means that if T is a trace of PM1 ‖ PM2 and we re-
move from T the events that are not in the alphabet of PM1,
we will obtain a trace of PM1 [1].

It has been shown by Hoare that, for deterministic
processes, ”...the mathematical model (of processes) is
based on the relevant directly or indirectly observable prop-
erties of the process. These certainly include its alpha-
bet and traces; but for a nondeterministic (our emphasis)
process there are also its refusals and divergences” [4]. So,

as a set of traces is the mathematical model of a trace inde-
pendent deterministic process, we use this as the basis for
comparison when we study equivalence or relationship of
two protocol machines.

The fact that the result of the composition of two pro-
tocol machines PM1 ‖ PM2 is observationally consistent
with PM1 has an important practical consequence: com-
posing another machine with PM1 cannot ”break” its trace
behaviour. In other words, any reasoning about behaviour
that is predicated on the trace behaviour of PM1 being
observed remains true when considering the behaviour of
PM1 ‖ PM2. This constitutes a form of local reason-
ing, allowing reasoning about behaviour of the whole based
only on consideration of the behaviour of its parts. Local
reasoning of this kind is an important in facilitating separate
modelling of the parts of a software system, and in retaining
control over complexity as the model grows.

Model Evolution. Composition provides natural support
for model evolution. For example, if we want to extend our
system by adding a Game Machine, we can do this with-
out changing the Call Machine. We need to build an in-
dependent Game Machine and synchronize it with the Call
machine.

A Game Machine is shown in Figure 4. A game can be
started when a call is enabled. A game is interrupted by any
call event of type CALL or FINDCALL. The events START,
STOP, RESUME of the Game Machine are treated identi-
cally by the Call Machine and have the alias PLAYEVENT.
One of the possible traces of the result of the composition
is
INITIALISE, ON, START, CALL, END, RESUME, STOP.
Hiding the event END that do not belong to the alphabet of
the Game Machine and replacing event CALL by its alias
INTERRUPT, we derive the sequence of the Game Ma-
chine:
INITIALISE, ON, START, INTERRUPT, RESUME, STOP.
Both machines are trace independent with respect to each
other, so the trace behaviour of both machines is preserved
in the result of the composition.

7 Conclusion

In this paper we have shown that the Protocol Modelling
semantics supports a compositional modelling approach for
a large class of embedded system, where behaviour is inter-
active and deterministic. We have outlined how the compo-
sitional approach supports local reasoning about the whole
based on consideration of behaviour of the parts, and how
composition can be exploited to grow models in an evolu-
tionary style.

We have also shown that Protocol Modelling semantics
is notation independent, and how it can be expressed in two

widely used behavioural notations: CPN and State Charts.
Existing tools for those notations, for example, the CPN
tools [14], could be used for modelling, analysis and com-
position of separate protocol machines, provided that sup-
port the semantics of event acceptance and refusal and CSP
machine composition (as described in Section 4) were to be
added.

In this paper we have illustrated the merits of Protocol
Modelling semantics in order to bring this approach to the
attention of the embedded systems modelling community.
We would like to invite the embedded systems modelling
community to explore and develop the ideas further.

References

[1] A. McNeile, N. Simons. State Machines as Mixins. Journal
of Object Technology, 2(6):85–101, 2003.

[2] A. McNeile, N. Simons. Protocol Modelling. A modelling
approach that supports reusable behavioural abstractions.
Software and System Modeling , 5(1):91–107, 2006.

[3] B. Liskov, J. Wing. A behavioural notion of subtyping.
ACM Transactions on Programming Languages and Sys-
tems, 16(6):1811–1841, 1994.

[4] C. Hoare. Communicating Sequential Processes. Prentice-
Hall International, 1985.

[5] J. Ebert, G. Engels. Dynamic models and Behavioural
Views. LNCS 858, 1994.

[6] K. Jensen. Coloured Petri Nets. Springer, 1997.
[7] L. Kristensen, J. Jørgensen, K. Jensen. Application of

Coloured Petri Nets in System Development. J.Desel,
W.Reisig and G.Rosenberg (Eds) ACPN 2003, LNCS 3098,
pages 626–685, 2003.

[8] M. Elkoutbi, R. Keller. Modeling Interactive Systems with
Hierarchical Colored Petri Nets. Proc. of the Conference on
High Performance Computing, Boston., 1998.

[9] M. Jackson. System Development. Prentice Hall, 1983.
[10] P. Koopman, H. Choset, R. Gandhi, B. Krogh, D. Mar-

culescu, P. Marasimhan, J. Paul, R. Rajkumar, D. Siewiorek,
A. Smailagic, P. Steenkiste, D. Tomas, C. Wang. Under-
graduate Embedded Systems Education at Carnegie Mel-
lon. ACM transactions on Embedded Computing Systems,
4(3):500–528, 2005.

[11] P. Palanque, R. Bastide, L. Dourte, C. Sibertin-Blanc. De-
sign of User-Driven Interfaces Using Petri Nets and Objects.
LNCS 685, 1993.

[12] R. Milner. Communicating and Mobile Systems - the Pi-
Calculus. Cambridge University Press, 1999.

[13] S. Cook, J. Daniels. Designing Object Systems: Object-
Oriented Modelling with Syntropy. Prentice Hall, 1994.

[14] University of Aarhus. CPN group. CPN tools.
http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

